2019高考数学大一轮总复习 第六章 数列与算法同步训练 理

来源:互联网 由 z1017cn5 贡献 责任编辑:王小亮  
第六章 数列与算法

第1讲 数列的概念及简单应用

A 级训练

(完成时间:10分钟)

1.下面对数列的理解有四种:

①数列可以看成一个定义在N *上的函数;②数列的项数是无限的;

③数列若用图象表示,从图象上看都是一群孤立的点;

④数列的通项公式是唯一的.

其中说法正确的序号是( )

A .①②③

B .②③④

C .①③

D .①②③④

2.数列1,0,1,0,1,…的一个通项公式是( )

A .a n =1--n +12

B .a n =1+-n +12

C .a n =-n -12

D .a n =--n -12

3.在数列1,1,2,3,5,8,x,21,34,55中,x 等于( )

A .11

B .12

C .13

D .14

4.数列{a n }中,a n =n 2-7n +6,那么150是其第 16 项.

5.已知数列{a n }的通项公式a n =cn +d n ,且a 2=32,a 4=32

,求a 10.

数列{a n }中,已知a n =(-1)n n +a (a 为常数),且a 1+a 4=3a 2,求a 100.

B 级训练

(完成时间:15分钟)

1.[限时2分钟,达标是( )否( )]

数列{a n }的通项公式是a n =1n +n +1

,当其前n 项和为9时,项数n 是( ) A .9 B .99

C .10

D .100

2.[限时2分钟,达标是( )否( )]

已知数列{a n }的前n 项和S n =n 2

第k 项满足5A .9

B .8

C .7

D .6

3.[限时2分钟,达标是( )否( )] 数列53,108,17a +b ,a -

b

24,…中,有序数对(a ,b )可以是____________.

4.[限时2分钟,达标是( )否( )]

已知数列{a n }是递增数列,且a n =n 2

+λn ,则实数λ的范围是 (-3,+∞)

. 5.[限时2分钟,达标是( )否( )]

数列{a n }的前n 项和S n =n 2

2,则|a 1|+|a 2|+…+|a 10|= 66 .

6.[限时5分钟,达标是( )否( )]

(2013·江西)正项数列{a n }满足a 2

n -(2n -1)a n -2n =0.

(1)求数列{a n }的通项公式a n ;

(2)令b n =1

n +a n

,求数列{b n }的前n 项和T n .

C 级训练

(完成时间:11分钟)

1.[限时2分钟,达标是( )否( )]

已知数列{a n }的通项公式a n =2014sin n π

2,则a 1+a 2+…+a 2014=( )

A .2012

B .2013

C .2014

D .2015

2.[限时2分钟,达标是( )否( )]

已知数列{a n}的首项为1,a n+1是直线y=3x-2a n在y轴上的截距,n∈N*,则数列{a n}的前n项和为( )

A.2n-1-1

B.2n-1

C.1

3

[1-(-2)n-1] D.

1

3

2)n] 3.[限时2分钟,达标是( )否( )]

在数列{a n}中,a1=1,a n+1=

2a n

2+a n

(n∈N*),猜想这个数列的通项公式为

________________.

4.[限时5分钟,达标是( )否( )]

(2014·广东江门一模)已知数列{a n}的前n项和S n=2n2-1.

(1)求数列{a n}的通项公式;

(2)是否存在正整数p、q(p>1且q>1)使a1、a p、a q成等比数列?若存在,求出所有这样的等比数列;若不存在,请说明理由.

第2讲等差数列

A级训练

(完成时间:10分钟)

1.等差数列1,-1,-3,-5,…,-89,它的项数是( )

A.92

B.47

C.46

D.45

2.在等差数列{a n}中,若a2,a10是方程x2+12x-8=0的两个根,那么a6的值为( )

A.-12

B.-6

C.12

D.6

3.(2014·重庆)在等差数列{a n}中,a1=2,a3+a5=10,则a7=( )

A.5

B.8

C.10

D.14

4.在等差数列{a n}中,首项a1=0,公差d≠0,若a m=a1+a2+…+a9,则m的值为( )

A.37

B.36

C.20

D.19

5.(2013·重庆)若2、a、b、c、9成等差数列,则c-a=.

6.已知等差数列{a n}的首项a1=1,前三项之和S3=9,则{a n}的通项a n=2n-1 .

7.已知等差数列{a n}中,a3a7=-16,a4+a6=0,求{a n}前n项和S n.

已知数列{a n}的通项公式a n=-2n+11,前n项和S n.如果b n=|a n|(n∈N),求数列{b n}的前n项和T n.

B 级训练

(完成时间:15分钟)

1.[限时2分钟,达标是( )否( )]

在a 和b 之间插入n 个数构成一个等差数列,则其公差为( ) A.b -a n B.a -b n +1

C.b -a n +1

D.b -a n -1

2.[限时2分钟,达标是( )否( )]

等差数列{a n }的前n 项和记为S n ,若a 2+a 4+a 15的值是一个确定的常数,则数列{S n }中也为常数的项是( )

A .S 7

B .S 8

C .S 13

D .S 15

3.[限时2分钟,达标是( )否( )]

设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5

=( ) A .1 B .-1

C .2 D.12

4.[限时2分钟,达标是( )否( )]

等差数列{a n }的公差d 不为0,S n 是其前n 项和,给出下列命题: ①若d <0,且S 3=S 8,则S 5和S 6都是{S n }中的最大项;

②给定n ,对于一切k ∈N *(k ③若d >0,则{S n }中一定有最小的项;

④存在k ∈N *,使a k -a k +1和a k -a k -1同号.

其中正确命题的个数为( )

A .4

B .3

C .2

D .1

5.[限时2分钟,达标是( )否( )]

(2014·广东佛山二模)已知等差数列{a n }的前n 项和为S n ,且S 9=S 4+20,则S 13的值为 52 .

6.[限时5分钟,达标是( )否( )]

已知数列{a n }的前n 项和S n =25n -2n 2.

(1)求证:{a n }是等差数列.

(2)求数列{|a n |}的前n 项和T n .


  • 与《2019高考数学大一轮总复习 第六章 数列与算法同步训练 理》相关:
  • 南方新高考高考数学大一轮总复习第六章数列与算法同步
  • 【南方新高考】高考数学大一轮总复习 第六章 数列与
  • 2019版高考数学大一轮复习第七章数列与数学归纳法
  • 2019版高考数学大一轮复习第七章数列与数学归纳法
  • (浙江专版)2019版高考数学大一轮复习第七章数列
  • 2019届高考数学大一轮复习第六章数列第1讲数列的
  • (浙江专版)2019版高考数学大一轮复习第七章数列
  • 2019届高考数学大一轮复习第六章数列6.1数列的
  • 本站网站首页首页教育资格全部考试考试首页首页考试首页职业资格考试最近更新儿童教育综合综合文库22文库2建筑专业资料考试首页范文大全公务员考试首页英语首页首页教案模拟考考试pclist学路首页日记语文古诗赏析教育教育资讯1高考资讯教育头条幼教育儿知识库教育职场育儿留学教育高考公务员考研考试教育资讯1问答教育索引资讯综合学习网站地图学习考试学习方法首页14托福知道备考心经冲刺宝典机经真题名师点睛托福课程雅思GREGMATSAT留学首页首页作文
    免责声明 - 关于我们 - 联系我们 - 广告联系 - 友情链接 - 帮助中心 - 频道导航
    Copyright © 2017 www.xue63.com All Rights Reserved