沉井基础最终版

来源:互联网 由 船舶建造工程师 贡献 责任编辑:王小亮  
第五节 沉井基础设计

沉井基础为深基础,具有埋深较大,整体性好,稳定性好,能承受较大的垂直和水平荷载的特点。

桥梁沉井基础多用于大型桥梁。江阴长江公路大桥北锚锭基础采用钢筋混凝土沉井,平面尺寸为69m×51m,下沉58m;日本明石海峡大桥主塔基础采用钢壳沉井,平面尺寸为80m×70m和78m×67m,下沉60m。一、沉井的类型1.按沉井形状分

按其截面轮廓分,有单孔或多孔的圆形、矩形和圆端形等三类:①圆形沉井,形状对称,周长最小、摩阻力相应减小,便于下沉且下沉不宜倾斜,但与墩、台截面形状适应性差;②矩形沉井,惯性矩及核心半径均较大,对基底受力有利,与墩、台截面形状适应性好,模板制作简单,但边角土不易挖除,下沉易产生倾斜;③圆端形沉井,适用于圆端形的墩身,控制下沉与受力状态较矩形好, 但施工较复杂。

图7-5-1 沉井常见截面型式

a 圆形沉井 b 圆端形沉井 c 矩形沉井

按沉井外壁立面形状分,有柱形、阶梯形和倒锥形:①柱形构造简单,挖土较均匀,井壁接长较简单,模板可重复使用;②阶梯形、倒锥形,节井壁与土的摩擦力较小,但施工较复杂,消耗模板多。

7-5-2 沉井外壁立面型式

a 柱形沉井 b阶梯形沉井 c 倒锥形沉井2.按建筑材料分

按建筑材料分,有竹沉井、砖、石沉井、混凝土沉井、钢筋混凝土沉井和钢沉井等。桥梁沉井多采用混凝土、钢筋混凝土和钢沉井。

混凝土沉井 混凝土沉井的特点是抗压强度高,抗拉强度低,因此这种沉井宜做成圆形,并适用于下沉深度不大(4~7m)的软土层中。

钢筋混凝土沉井 这种沉井的抗拉及抗压强度较高,下沉深度可以很大(达数十米以上),当下沉深度不很大时,井壁上部用混凝土,下部(刃脚)用钢筋混凝土,在桥梁工程中得到广泛运用,当沉井平面尺寸较大时,可做成薄壁结构,沉井外壁采用泥浆润滑套、壁后压气等施工辅助措施就地下沉或浮运下沉。此外,钢筋混凝土沉井井壁隔墙可分段(块)预制,工地拼接,做成装配式。

竹筋混凝土沉井 沉井在下沉过程中受力较大因而需配置钢筋,一旦完工后,它就不再承受多大的拉力。因此,在南方产竹地区,可以采用耐久性差但抗拉力好的竹筋代替部分钢筋,我国南昌赣江大桥等曾采用这种沉井。在沉井分节接头处及刃脚仍采用钢筋。

钢沉井 用钢材制造的沉井其强度高、质量轻、易于拼装、宜于做浮运沉井,但用钢量大,国内较少采用。二、一般构造和设计一般规定

沉井一般由刃脚、井壁、隔墙及封底(底版)等部分组成。如图7-5-3。

图7-5-3 沉井构造示意图

1——井壁; 2——刃脚; 3——隔墙; 4——井壁凹槽;

5—\t—封底和底板; 6——顶盖

沉井设计前,必须掌握下列资料:①各项设计水位、施工水位和冲刷标高;

河床标高和地质情况,各土层的容重、内摩擦角、承载力和井壁摩擦力,沉井通过的覆盖层有无障碍物,岩面的高差变化;

上部结构和墩台的情况,沉井基础的设计荷载;

拟采用的施工方法等。

井壁

沉井的外壁,是沉井的主要部分,应有足够的强度,以便承受沉井下沉过程中及使用时作用的荷载;同时还要求有足够的重量,使沉井在自重作用下能顺利下沉。

一般根据沉井深度预估井壁厚度,参见表值7-5-1。

井壁厚度预估参考值 表7-5-1

沉井深度

井壁厚度

4~6m

300~400mm

6~8m

350~450mm

8~10m

400~550mm

10m以上

500mm~1500mm

刃脚

井壁下端一般都做成刀刃状的“刃脚”,其功用是减少下沉阻力。刃脚底面(踏面)宽度一般为0.1~0.2m,刃脚处采用钢筋混凝土制作,混凝土强度等级宜在C20及上。

隔墙

设置在沉井井筒内,其主要作用是增加沉井在下沉过程中的刚度,同时,又把整个沉井分隔成多个施工井孔(取土井),使挖土和下沉可以较均衡地进行,也便于沉井偏斜时的纠偏。

隔墙厚度一般小于井壁,且高于刃脚 0.5m,以免防碍沉井下沉,有时还在隔墙下端设置人孔,以便工作人员在井孔中活动。

井壁凹槽

设置在刃脚上方井壁内侧,其作用时使封底混凝土和底板与井壁间有更好的联结,以传递基底反力。凹槽槽深约0.15~0.2m,高约1.0m。

封底和底版

当沉井下沉到设计标高,经过技术检验并对井底清理整平后,即可封底、浇注底版,以防止地下水渗入井内。封底混凝土强度等级一般不低于C15,岩石地基可用C15,一般地基用C20。

顶盖

井顶浇筑钢筋混凝土顶盖,待顶盖达到设计强度后方可施工下构。顶盖支承墩(台)及上部结构的全部荷载。

沉井的强度等级

沉井各部分混凝土强度等级:刃脚不应低于C25;井身不应低于C20;当为薄壁浮运沉井时,井壁和隔板不应低于C25,腹腔内填料不应低于C15。

封底混凝土强度等级:非岩石地基不应低于C25,岩石地基不应低于C20。三、设计计算的主要内容

沉井设计计算包括各部尺寸的拟定、沉井作为整体基础的计算;沉井施工过程中的计算三部分。(一)沉井主要尺寸的拟定

根据水文、地质及上部结构和墩台的情况,结合沉井的构造要求、施工方法,分别拟定沉井的高度和分节、沉井的平面尺寸、井孔的大小及形状、刃脚的形式和尺寸、井孔的填料、凹槽的位置以及封底、承台的厚度等。

1.沉井高度及分节

沉井的全高取决于沉井顶面和基底位置,沉井基础底面高程应根据冲刷深度和地基容许承载力等因素确定。

沉井顶面不应高出最低水位,如果地面高出最低水位且不受冲刷时,则不宜高出地面。顶面和基底位置拟好后,即可得出沉井的高度。

较高的沉井应分节制造下沉,沉井的分节高度不宜高于5m。在软土层中下沉的沉井,为保证稳定,其底节高度不应大于沉井宽度的0.8倍。为了减小下沉时土对井壁的摩阻力,在分节处一般留有台阶,台阶宽度为10~20 cm。对于采用泥浆套和空气幕下沉的沉井,除底节顶部留有台阶外,其他分节处可不留台阶。

2.沉井的平面尺寸

沉井的平面尺寸应满足墩台身底面尺寸及基底受力两个要求,同时还要考虑井孔、隔墙、井壁等构造尺寸和施工要求。

设计时一般先按墩台身底尺寸的要求初拟尺寸,经基底受力检算合格才最后确定。沉井顶面尺寸等于墩台身底面尺寸加襟边宽度,襟边的最小宽度一般不小于沉井总高度的1/50,且不小于0.2m。如为浮式沉井,再另加宽0.2m。对于井顶设置围堰的沉井,除上述规定外,襟边宽度还应满足安装墩台身模板的要求。

当沉井的全部尺寸拟定后,首先应检算沉井的自重是否足以克服下沉时土的摩擦力。(二)沉井作为整体基础的计算

沉井作为整体深基础的设计主要是根据上部结构特点、荷载大小以及水文、地质情况,结合沉井的构造要求及施工方法,拟定出沉井的平面尺寸、埋置深度,然后进行沉井基础的计算。

沉井基础的计算。根据它的埋置深度可采用两种不同的计算方法。当沉井埋置深度在最大冲刷线以下较浅仅数米时,这时可以不考虑基础侧面土的横向抗力的影响,而可按浅基础设计计算规定,分别验算地基强度、沉井基础的稳定性和沉降,使它符合容许值得要求;当沉井基础埋置深度较大时,由于埋置深度在土体内较深,不可忽略沉井周围土体对沉井的约束作用,因此在验算地基应力、变形及沉井的稳定性时,需要考虑基础侧面土体弹性抗力的影响。本章主要介绍后者。这种计算方法的基本假定条件是:

①地基土作为弹性变形介质,水平向地基系数随深度成正比例增加;

②不考虑基础与土之间的粘着力和摩阻力;

③沉井基础的刚度与土的刚度之比可认为是无限大。

由于这些假设条件,沉井基础在横向外力作用下只能转动而无绕曲变化,因此,可按刚性桩柱(刚性杆件)计算内力和土抗力。即相当于“m”法中αh≤2.5的情况。下面讨论这种计算方法。

1.\t非岩石地基上沉井基础的计算

沉井基础受到水平力H及偏心竖向力N作用时[ 图7-5-4a) ],为了讨论方便,可以把这些外力转变成为中心荷载和水平力的共同作用,转变后的水平力H距离基底的作用高度λ[ 图7-5-4b) ]为:

(7-5-1)

先讨论沉井在水平力H作用下的情况。由于水平力的作用,沉井将围绕位于地面下z0 深度处的A点转动一ω角(图7-5-5),地面下深度z处沉井基础产生的水平位移Δx和土的横向抗力σzx分别为

(7-5-2)

(7-5-3a)

式中:—转动中心A离地面的距离;

—深度z处水平向的地基系数(kN/m3),

—地基系数随深度变化的比例系数(kN/m4)。

a) b)

图7-5-4 荷载作用情况(P167)

图 7-5-5 水平及竖向荷载作用下的应力分布(P167)

值代入式(7-5-3a)得

(7-5-3b)

从式(7-5-3b)可见,土的横向抗力沿深度为二次抛物线变化

基础地面处的压应力,考虑到该水平面上的竖向地基系数C0不变,故其压应力图形与基础竖向位移图相似。即

(7-5-4)

式中:—基底宽度或直径。

值可按表7-4-40采用。

在上述三个公式中,有两个未知数,要求解其值,可建立连个平衡方程式,即

(7-5-5)

(7-5-6)

式中: b1—基础计算宽度,按“m法”计算;

W—基底的截面模量

对以上二式进行联立解,可得

(7-5-7)

(7-5-8)

,β为深度h处沉井侧面的水平向地基系数与沉井底面的竖向地基系数的比值,其中m可按式(7-4-24)计算:

将式(7-5-7)、式(7-5-8)代入式(7-5-3)及式(7-5-4)得

(7-5-9)

(7-5-10)

当有竖向荷载N及水平力H同时作用时(图7-5-18),则基底边缘处压力为

(7-5-11)

式中:A0—基础底面积

离地面或最大冲刷线以下z深度处基础截面上的弯矩(图7-5-18),为

(7-5-12)

2.\t基底嵌入基岩内的计算方法

7-5-6 水平力作用下的应力分布(P168)

若基底嵌入基岩内,在水平力和竖直偏心荷载作用下,可以认为基底不产生水平位移,则基础的旋转中心A与基底中心相吻合,即z0=h,为一已知值(图7-5-6)。这样,在基底嵌入处便存在一水平阻力P,由于P力对基底中心轴的力臂很小,一般可忽略P对A点的力矩。当基础有水平力H作用时,地面下z深度处产生的水平位移Δx和土的横向抗力σzx分别为:

(7-5-13)

(7-5-14)

基底边缘处的竖向应力为:

(7-5-15)

岩石的C0值可按表7-4-40查用。

上述公式中只有一个未知数,故只需建立一个弯矩平衡方程便可解出值。

(7-5-16)

解上式得

(7-5-17)

代入式(7-5-14)和式(7-5-15)得

(7-5-18)

(7-5-19)

基底边缘处的应力为

(7-5-20)

根据。可以求出嵌入处未知的水平阻力P

(7-5-21)

地面以下z深度处基础截面上的弯矩为

(7-5-22)

3.\t墩台顶面的水平位移的计算方法

基础在水平力和力矩作用下,墩台顶面会产生水平位移δ,它由地面处的水平位移z0tanω、地面到墩台顶范围h2内的水平位移h2tanω、在h2范围内墩台身弹性绕曲变形引起的墩台顶水平位移δ0三部分组成。

(7-5-23)

考虑到转角一般均很小,令不会产生多大的误差。另一方面,由于基础的实际刚度并非无穷大,而刚度对墩台顶的水平位移是有影响的,故需考虑实际刚度对地面处水平位移的影响及对地面处转角的影响,用系数K1、K2表示。K1、K2是αh和的函数,其值可按表7-4-41查用。因此,式(7-5-23)可写成

(7-5-24)

或对支承在岩石地基上的墩台顶面水平位移为

(7-5-25)

4.\t验算

(1)基底应力的验算

式(7-5-11)及式(7-5-20)所计算出的最大压应力不应超过沉井底面处土的容许压应力 ,即

(7-5-26)

(2)横向抗力的验算

由式(7-5-9)、式(7-5-18)计算出的值应小于沉井周围土的极限抗力值,否则不能考虑基础侧向土的弹性抗力,其计算方法如下:

当基础在外力作用下产生位移时,在深度z处基础一侧产生主动土压力强度,而被挤压一侧土就受到被动土压力强度,故其极限抗力以土压力表达为

(7-5-27)

由朗金土压力理论可知

pp=γztan2(45°+)+ 2cot(45°+) (7-5-28)

pa=γztan2(45°-)+ 2cot(45°-

代入式(7-5-27)整理后得

(7-5-29)

式中为土的重度,和c分别为土的内摩擦角和粘聚力。考虑到桥梁结构性质和荷载情况,并根据经验知道出现最大的横向抗力大致在处,将考虑的这些值代入式(7-5-29)便有下列不等式

(7-5-30)

(7-5-31)

式中:— 相应于深度处的土横向抗力;

— 相应于z=h深度处的土横向抗力,h为基础的埋置深度;

— 取决于上部结构形式的系数,一般取,对于拱桥

— 考虑恒载对基础底面重心所产生的弯矩Mg在总弯矩M中所占百分比的系数,即

(3)墩台顶面水平位移验算

桥梁墩台设计时,除应考虑基础沉降外,往往还需要检验由于地基变形和墩台身的弹性水平变形所产生的墩台顶面的弹性水平位移。现行规范中规定:墩台顶面的水平位移(cm)应符合下列要求

式中:L——相邻跨中最小跨的跨度(m),当跨度L<25时,L按25m计算。(三)沉井在施工过程中的计算

从底节沉井拆除垫木,直至上部结构修筑完成开始使用以及营运过程中,沉井均受到不同外力的作用。因此,沉井的结构强度必须满足各阶段最不利受力情况的要求。根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJ 023-85),钢筋混凝土受弯构件施工阶段应力验算可采用容许应力法。因此在下列有关钢筋混凝土结构强度验算中,除沉井封底与顶盖一部分计算外,均采用容许应力法。针对沉井各部分在施工过程中的最不利受力情况,首先拟出相应的计算图式,然后计算截面应力,进行必要的配筋,保证井体结构在施工阶段中的强度和稳定。

沉井结构在施工过程中主要进行下列验算。1.沉井自重下沉验算

为了使沉井能在自重下顺利下沉,沉井重力(不排水下沉者应扣除浮力)应大于土对井壁的摩阻力,将两者之比称为下沉系数,要求

(7-5-32)

式中:——下沉系数,应根据土类别及施工条件取大于1的数值;

——沉井自重(kN);

——土对井壁的总摩阻力,,其中为沉井穿过第i层土的厚度(m)和该段沉井的周长(m),为第i层土对井壁单位面积的摩阻力,其值应根据实验确定,如缺少资料,可按表7-5-2的数据采用。

土与井壁间单位面积的摩阻力f 表7-5-2

土的种类

f(kPa)

土的种类

f(kPa)

砂性土

12~25

砾石

15~20

卵石

15~30

软土

10~12

黏性土

25~50

泥浆套

3~5

当不能满足式(7-5-32)要求时,可选择下列措施直至满足要求:加大井壁厚度或调整取土井尺寸;如为不排水下沉者,则下沉到一定深度后可采用排水下沉;增加附加荷载或射水助沉;采用泥浆润滑套或壁后压气法等措施。2.第一节(底节)沉井的竖向挠曲验算

第一节沉井在抽出垫木及挖土下沉过程中,沉井可按承受自重的梁计算井壁产生的竖向挠曲应力。如挠曲应力超出了沉井材料的容许限值,就应增加第一节沉井高度或在井壁内设置横向钢筋,以防止沉井竖向开裂。

验算时应采用的第一节沉井的支承点位置与沉井的施工方法有关,现分别叙述如下:

(1)排水挖土下沉

由于沉井是排水挖土下沉,所以不论在抽除刃脚下垫木以及在整个挖土下沉过程中,都能很好地控制沉井的支承点。为了使井体挠曲应力尽可能小些,支点距离可以控制在最有利的位置处。对矩形及圆端形沉井而言,是使其支点和跨中点的弯矩大致相等。如沉井长宽比大于1.5,支点设在长边上,支点间距可采用0.7L,L为沉井长度,如图7-5-7,以此验算沉井井壁顶部和下部弯曲抗拉的强度,防止开裂。圆形沉井四个支点可布置在两个相互垂直线上的端点处。

(2)不排水挖土下沉

a) b) c)

图7-5-7 第一节沉井支承点布置示意(P172)

由于井孔中有水,挖土可能不均匀,支点设置也难控制,沉井下沉过程中可能会出现最不利的支承情况。对矩形及圆端形沉井,支点在长边的中点上,如图7-5-7b),另一种情况支点在四个角上,如图7-5-7c);对于圆形沉井,两个支点位于一直径上。图7-5-7a)和b)情况使沉井成为一悬臂梁,在支点处,沉井顶部可能产生竖向开裂;而图7-5-7c)使沉井成为一简支梁,跨中弯矩最大,沉井下部竖向可能开裂。这两种情况均应对长边跨中附近最小截面上下缘进行验算。

若底节沉井内隔墙的跨度较大,还需验算内隔墙的抗拉强度。内隔墙最不利的受力情况是下部土已挖空,第二节沉井的内墙已浇筑,但未凝固。这是,内隔墙成为两端支承在井壁上的梁,承受了本身重力以及上部第二节沉井内隔墙和模板等重力。如验算结果可能使内隔墙下部产生竖向开裂,应采取措施,或布置水平向钢筋,或在浇筑第二节沉井时内隔墙底部回填砂石并夯实,使荷载传至填土上。3.沉井刃脚受力计算

沉井在下沉过程中,刃脚受力较为复杂,刃脚切入土中时受到向外弯曲应力,挖空刃脚下的土时,刃脚又受到外部土、水压力作用而向内弯曲。从结构上来分析,可认为刃脚把一部分力通过本身作为悬臂梁的作用传到刃脚根部,另一部分由本身作为一个水平的闭合框架作用所负担,因此,可以把刃脚看成在平面上是一个水平闭合框架,在竖向是一个固定在井壁上的悬臂梁。水平外力的分配系数,可根据悬臂及水平框架两者的变位关系及其他一些假定得到。

刃脚悬臂作用的分配系数为

) (7-5-33)

刃脚框架作用的分配系数为

(7-5-34)

上述式中:——支承于隔墙间的井壁最大计算跨度;

——支承于隔墙间的井壁最小计算跨度;

——刃脚斜面部分的高度。

水平外力按上面两个分配系数分配,只适用于内隔墙底面高出刃脚底面不超过0.5m,或大于0.5m而有垂直埂肋的情况。否则,全部水平力应由悬臂作用承担,即。刃脚不再起水平框架作用,但仍应按构造要求布置水平钢筋,使能承受一定的正、负弯矩。

外力经过上面的分配以后,就可以将刃脚受力情况按竖、横两个方向来计算。

1)刃脚竖向受力分析

刃脚竖向受力情况一般截取单位宽度井壁来分析,把刃脚视为固定固定在井壁上的悬臂梁,梁的跨度即为刃脚高度。由内力分析有下述两种情况:

(1)刃脚向外挠曲的内力计算

刃脚切入土中一定深度,由于沉井自重作用,在刃脚斜面上便产生了土的抵抗力,它使刃脚向外挠曲。这种最不利情况是刃脚斜面上土的抵抗力最大,而井壁外的土压力及水压力最小时,具体应根据沉井的构造、土层情况及施工情况具体分析确定。一般近似认为在沉井下沉过程中,刃脚内侧切入土中深度约1.0m,上节沉井均已接上,且沉井上部露出地面或水面约一节沉井高度时,为最不利情况,以此来计算刃脚的向外挠曲弯矩。

刃脚高度范围内的外力有:刃脚外侧的主动土压力及水压力,沉井自重,土对刃脚外侧的摩阻力,以及刃脚下土的抵抗力。其计算图式如图7-5-8.

图7-5-8 刃脚向外挠曲受力情况(P173)

①作用在刃脚外侧单位宽度上的土压力及水压力的合力为

(7-5-35)

式中:——作用在刃脚外侧根部处的土压力及水压力强度之和;

——刃脚底面处的土压力及水压力强度之和;

——刃脚高度。

力的作用点(离刃脚根部的距离)为?

(7-5-36)

地面下深度处刃脚承受的土压力可按朗金主动土压力公式计算,即

(7-5-37)

式中:——高度范围内土的平均重度,在水位以下应考虑浮力;

——计算位置至地面的距离。

水压力的计算为,其中为水的重度,为计算位置至水面的距离。

水压力是应根据施工情况和土质条件计算的(可参考刃脚向内挠曲验算时有关说明)。为了避免计算所得土、水压力值偏大而使验算方法偏于不安全,一般设计规范均规范了由式(7-5-35)算得的刃脚外侧土、水压力值不得大于静水压力的70%,否则按静水压力的70%计算。

②作用在刃脚外侧单位宽度上的摩阻力可按下列二式计算,并取其较小者。

(7-5-38)

(7-5-39)

式中:——土与井壁间单位面积上的摩阻力,由表7-5-2查用;

——刃脚高度;

E——刃脚外侧总的主动土压力,即

③刃脚下抵抗力的计算。刃脚下竖向反力R(取单位宽度)可按下式计算:

(7-5-40)

式中:q——沿井壁周长单位宽度上沉井的自重,在水下部分应考虑水的浮力;

——沉井入土部分单位宽度上的摩阻力。

为求R的作用点,可将R分为两部分,然后根据图7-5-21求得。图中刃脚踏面宽度为,踏面下的反力假定为均匀分布,其合力用表示。假定刃脚斜面与水平面成θ角,斜面与土间的摩擦角为。故作用在斜面上土反力的合力与斜面的垂直方向成角,斜面上反力成三角形分布。因此

(7-5-41)

R的作用点距井壁外侧的距离为

(7-5-42)

式中:——刃脚内侧入土斜面在水平面上的投影长度。

根据力的平衡条件,由图7-5-21可知

(7-5-43)

(7-5-44)

(7-5-45)

其中为土与刃脚斜面间的外摩擦角,一般定为30°,刃脚斜面上水平反力H作用点离刃脚底面1/3m。

④刃脚(单位宽度)自重g为

(7-5-46)

式中:λ——井壁厚度;

——钢筋混凝土刃脚的容重,不排除施工时应扣除浮力。

刃脚自重g的作用点至刃脚根部中心轴的距离为

(7-5-47)

求出以上各力的数值、方向及作用点后,再算出各力对刃脚根部中心轴的弯矩总和值,竖向力及剪力Q,其算式为

(7-5-48)

(7-5-49)

(7-5-50)

式中:——分别为反力R、土压力及水压力、横向力H、刃脚底部的外侧摩阻力以及刃脚自重g对刃脚根部中心轴的弯矩,其中作用在刃脚部分的各水平力均应按规定考虑分配系数

上述各数值的正负号视具体情况而定。

根据及Q值就可验算刃脚根部应力并计算出刃脚内侧所需的竖向钢筋用量。一般刃脚钢筋截面积不宜少于刃脚根部截面积的0.1%。刃脚的竖向钢筋应伸如根部以上0.5为支承于隔墙间的井壁最大计算跨度)。

(2)刃脚向内挠曲的内力计算

计算刃脚向内挠曲的最不利情况是沉井已下沉至设计标高,刃脚下的土已挖空而尚未浇筑封底混凝土(图7-5-9),这时将刃脚作为根部固定在井壁的悬臂梁,计算最大的向内弯矩。

图7-5-9 刃脚向内挠曲受力情况(P175)

作用在刃脚上的力有刃脚外侧的土压力、水压力、摩阻力以及刃脚本身的重力。以上各力的计算方法同前。但计算水压力应注意根据施工实际情况,现行的设计规范考虑到一般的情况及从安全出发要求不排水下沉沉井,井壁外侧水压力值以100%计算;井内水压力值以50%计算,或按施工可能出现的水头差计算。

若为排水下沉沉井,对不透水土,可按静水压力的70%计算,在透水性土中,可按静水压力的100%计算。

计算所得各水平外力均应按规定考虑分配系数

根据外力值计算出对刃脚根部中心轴的弯矩、竖向力及剪力后,并以此求出刃脚外壁的钢筋用量。同样,刃脚的竖向钢筋应伸入刃脚根部截面积的0.1%。刃脚的竖向钢筋应伸入刃脚根部以上0.5.

2)刃脚水平钢筋的计算

刃脚水平向受力最不利的情况是沉井已下沉至设计标高,刃脚下的土已挖空,尚未浇筑封底混凝土的时候,由于刃脚有悬臂作用及水平闭合框架的作用,故当刃脚作为悬臂考虑时,刃脚所受水平力乘以,而作用于框架的水平力应乘以分配系数后,其值作为水平框架上的外力,由此求出框架的弯矩及轴向力值。再计算框架所需的水平钢筋用量。

根据常用沉井水平框架的平面形式,现列出其内力计算式,以供设计时参考。

(1)单孔矩形框架(图7-5-10)

图7-5-10 单孔矩形框架受力(P175)

A点处的弯矩

B点处的弯矩

C点处的弯矩

轴向力

式中:=a/b,a为短边长度,b为长边长度。

(2)单孔圆端形(图7-5-11)

式中:K=L/r,r为圆形至圆端形井壁中心轴的距离。

(3)双孔矩形(图7-5-12)

式中:=

图7-5-11 单孔圆形框架受力 图7-5-12 双孔矩形框架受力 (P176)

(4)双孔圆端形(图7-5-13)

式中:

图7-5-13(P177)

a)双孔圆端形框架受力; b)圆形沉井井壁的土压力

(5)圆形沉井(图7-5-13b)

圆形沉井,如在均匀土中平稳下沉,受到周围均布的水平压力,则刃脚作为水平圆环,其任意截面上的内力弯矩,剪力,轴向压力,其中R为沉井刃脚外壁的半径。如由于下沉过程中沉井发生倾斜或土质的不均匀,都将使刃脚截面产生弯矩。因此应根据实际情况考虑水平压力的分布。为了便于计算,可以对土压力的分布作如下假设:设在井壁(刃脚)的横截面上互成90°两点处的径向压力为,计算时土的内摩擦角可增大2.5°~5°,计算时减小2.5°~5°,并假设其他各点的土压力按下式变化

式中:(也可根据土质不均匀情况,覆盖层厚度,直接确定值,一般取1.5~2.5)。

则作用在A、B截面上的内力为

式中:—A截面上轴向力和弯矩;

—B截面(垂直于A截面)上轴向力弯矩;

—井壁(刃脚)轴线的半径。4.井壁受力计算

1)井壁竖向拉应力验算

沉井在下沉过程中,刃脚下的土已被挖空,但沉井上部被摩擦力较大的土体夹住(这一般在下部土层比上部土层软的情况下出现),这时下部沉井呈悬挂状态,井壁就有在自重作用下被拉断的可能,因而应验算井壁的竖向拉应力。拉应力的大小与井壁摩阻力分布图有关,在判断可能夹住沉井的土层不明显时,可近似假定沿沉井高度成倒三角分布(图7-5-14)。在地面处摩阻力最大,而刃脚底面处为零。

图7-5-14 井壁摩阻力分布(P178)

该沉井自重为G,h为沉井的入土深度,U为井壁的周长,τ为地面处井壁上的摩阻力,τx为距刃脚底x处的摩阻力(图7-5-14)。由于

(7-5-51)

离刃脚底x处井壁的拉力为,其值为

(7-5-52)

为求的最大拉力,令

(7-5-53)

除沉井被障碍物卡住的情况以外,可用式(7-5-53)算出的拉力进行验算,当大于井壁圬工材料容许值时,应布置必要的竖向受力钢筋。对每节井壁接缝处的竖直拉力验算,可假定该处混凝土不承受拉应力,全部由接缝处钢筋承受。钢筋的应力应小于0.75钢筋标准强度,并须验算钢筋锚固长度。

2)井壁横向受力计算

沉井下沉过程中,井壁始终受到水平向的土压力及水压力作用,因而应验算井壁材料的强度。验算时是将井壁水平向截取一段作为水平框架来考虑,然后计算该框架的受力情况(计算方法与刃脚框架计算同)。井壁截取位置应是在刃脚根部(如图7-5-15所示)。沉井的最不利下沉情况是下沉至设计标高,刃脚下土已挖空而尚未封底,此时在c-c断面(图7-5-15)以上截取一段高度为井壁厚λ的井壁作为水平框架。其上作用的水平荷载,除了该段井壁范围内的土、水压力外,还有刃脚作为悬臂作用传来的水平剪力(其值等于刃脚向内绕曲时受到的水平外力乘以分配系数α)。

图7-5-15 井壁框架承受的外力(P179)

对于分节浇筑的沉井,整个沉井高度范围的井壁厚度可能不一致,而依厚度变化分成数段。因此,除了应验算靠近刃脚根部以上处的井壁材料强度外,同时还应验算各厚度变化段最下端处的单位高度的井壁强度(作为水平框架的强度),并以此来控制该段全高的设计。这些水平框架所承受的水平力为该水平框架高度范围内的土压力及水压力,并不需乘以分配系数β。

采用泥浆润滑套的沉井,若台阶以上泥浆压力大于上述土压力和水压力之和,则井壁压力应按泥浆压力计算。5.混凝土封底及盖板计算

1)封底混凝土计算

沉井封底混凝土的厚度应根据基底承受的反力情况而定。作用于封底混凝土的竖向反力可分为两种情况:一种是沉井水下封底后,在施工抽水时封底混凝土还需承受基底水和地基土的向上反力;一种是空心沉井在使用阶段,封底混凝土须承受沉井基础全部最不利荷载组合所产生的基底反力,如沉井井孔内填砂或有水时,可扣除其重力。

(1)封底混凝土厚度,可按下列两种方法计算并取其控制者。

封底混凝土视为支承在凹槽或隔墙底面和刃脚上的底板,按周边支承的双向板(矩形或圆端形沉井)或圆板(圆形沉井)计算。底板与井壁的连接一般按简支承考虑,当底板与井壁有可靠的整体连接(由井壁内预留钢筋联接等)时,也可按弹性固定考虑。

封底混凝土厚度,可按下式计算:

(7-5-54)

式中:—封底混凝土的厚度(m);

—在最大均布反力作用下的最大计算弯矩(kN·m),按支承条件考虑的荷载系数可由结构设计手册查取

—混凝土弯曲抗拉极限强度;

—荷载安全系数,此处;·

—材料安全系数,此处

—计算宽度,此处取1m。

(2)封底混凝土按受剪计算,即计算封底混凝土承受基底反力后是否有沿井孔范围内周边剪断的可能性。若剪应力超过抗剪强度则应加大封底混凝土的抗剪面积。

2)钢筋混凝土盖板的计算

对于空心沉井或井孔填以砾砂石的沉井,必须在井顶筑钢筋混凝土盖板,用以支承墩台的全部荷载。盖板厚度一般是预先拟定的,只需进行配筋计算,计算时考虑盖板作为承受最不利组合传来均布荷载的双向板,然后以此计算结果来进行配筋计算。

如墩身全部位于井孔内,还须验算盖板的剪应力和井壁支承压力。如墩身较大,部分支承在井壁上则不需进行盖板的剪力验算,只进行井壁压应力的验算。6.浮运沉井的计算要点

设计浮运沉井,除了按前述方法计算外,还应考虑沉井浮运过程中的受力情况。在根据基础结构的需要拟定出沉井的基本尺寸后,先要拟定浮运沉井的浮体构造,进行施工步骤计算,准确计算各施工步骤的沉井重力、入土深度、浮体稳定性、井壁内外水头差、井壁露出水面高度等。

1)浮运沉井稳定性验算

浮运沉井由于其浮运阶段和就位后接高下沉至河床阶段中均属一个悬浮与水中的浮体,它必须是一个稳定的浮体,故对悬浮状态下沉井,根据每一个施工步骤中的受力情况,必须核算其稳定性。

在稳定性验算中,主要是决定沉井的重心、浮心及定倾半径,然后将它们的数值进行比较,便可判断沉井在浮运和下沉过程中是否稳定。现以带临时底板的浮运沉井为例,进行稳定性验算。

(1)计算浮心位置(图7-5-16)

沉井重力等于沉井排开水的重力,浮运沉井吃水深(从底板算起),可按下式计算:

(7-5-55)

对圆端形沉井 (7-5-56)

上述式中:—沉井底板以上部分排水体积;

—沉井吃水的截面积;

—圆端形直径或沉井的宽度;

—沉井矩形部分的长度。

浮心的位置,以刃脚底面起算为时,可由下式求得

(7-5-57)

上式中:——各排水体积(沉井底板以上部分排水体积、刃脚体积、底板下隔墙体积)对其中心到刃脚底距离的乘积。

如各部分的乘积分别以表示,则

(7-5-58)

(7-5-59)

(7-5-60)

(7-5-61)

上述式中:——底板至刃脚底面的距离;

——隔墙底距刃脚踏面的距离;

——底板下的隔墙的高度;

——底板下井壁的厚度;

——隔墙厚度;

——隔墙底踏面的宽度;

——刃脚踏面的宽度;

图7-5-16 计算浮心位置示意图(P180)

(2)重心位置的计算(图7-5-29)

设重心位置O2离刃脚底面的距离为Y2,则

(7-5-62)

式中:——沉井各部分体积对其中心到刃脚底面距离的乘积,并假定了沉井各部分圬工度相同。

令重心与浮心的高差为,则

(7-5-63)

(3)定倾半径的计算

定倾半径为定倾中心到浮心的距离,由下式计算

(7-5-64)

式中:——吃水截面积的惯性矩。

对圆端形沉井而言(图7-5-17)

(7-5-65)

图7-5-17 圆端形沉井截面(P181)

对带气筒的浮运沉井,应根据气筒布置、各阶段气筒的使用、连通情况分别确定定倾半径ρ。

(4)浮运沉井稳定的必要条件

浮运沉井的稳定性应满足重心到浮心的距离小于定倾中心到浮心的距离,即

(7-5-66)

2)浮运沉井露出水面最小高度的验算

沉井在浮运过程中受到牵引力、风力等作用,不免使沉井产生一定的倾斜,这就要求沉井倾斜后顶面露出水面0.5~1.0m作为安全高度或沉井露出水面的最小高度,以保证沉井在拖运中的安全。

拖引力及风力等对浮心产生弯矩M,因而使沉井旋转(倾斜)角度θ(在一般情况下不允许θ值大于6°),其值为

(7-5-67)

式中:——水的重度,取为

沉井浮运时露出水面的最小高度按下式计算

(7-5-68)

式中:——浮运时沉井的高度;

——浮运沉井发生最大的倾斜时,顶面露出水面的安全距离,其值为

上式中用了为圆端形的直径,即假定由于弯矩作用使沉井没入水中的深度为计算值的两倍。四、圆端形沉井计算算例

某公路桥桥墩基础,上部构造为等跨等截面悬链线双曲拱桥,下部构造为重力式墩及沉井基础,基础的平面及剖面尺寸如图7-5-18所示。采用浮运法施工(浮运方法及浮运稳定性等验算本例从略),参照《公桥基规》进行设计计算。(一)设计资料

土质情况见图7-5-18。

传给沉井的恒载及活载见沉井各力的汇总表。

最低水位标高;潮水位;河床标高;最大冲刷线

算例中沉井结构强度验算着重在外力及内力计算,截面材料强度(包括配筋等)计算可参照《公路钢筋混凝土及预应力混凝土桥涵设计规范》、《公路砖石混凝土桥涵设计规范》等规定进行。

图7-5-18 沉井半正面、半侧面、半平面图及地质剖面(尺寸单位:cm)(P183)(二)沉井高度及各部分尺寸

1.沉井高度

沉井顶面在最低水位下,标高

(1)按水文计算 最大冲刷线深度为,大、中桥基础埋置深度应在最大冲刷线以下不小于,故沉井所需高度

但沉井底较近于细砂类淤泥层。

(2) 按土质条件 沉井应穿过厚的细砂夹淤泥层进入密实的砂卵石层并考虑有的安全度,故

(3)按地基容许承载力,沉井底面位于密实的砂卵石层为宜。

根据以上分析,拟采用沉井高度,沉井顶面标高定为,沉井底面标高为。因潮水位高,第一节底节沉井高度不宜太小,故第一节沉井高为,第二节高为,第一节沉井顶面标高为

2.沉井平面尺寸

考虑到桥墩形式,故采用两端半圆形中间为矩形的沉井。圆端的外半径为,矩形边长为,宽度为。井壁厚度第一节拟取,第二节厚度为,隔墙厚度(其他尺寸详见图7-5-18)。

刃脚踏面宽度采用,刃脚高度为(图7-5-19),刃脚内侧倾角

图7-5-19 (尺寸单位:cm)(P183)(三)荷载计算

1.沉井自重

1)刃脚

重度

刃脚截面积

形心至井壁外侧的距离为

刃脚体积

刃脚重力

2).底节第一节沉井井壁

3) 底节沉井隔壁

4) 第二节沉井井壁

5)钢筋混凝土盖板(厚1.5m)

6)井孔填砂卵石重

考虑自井底以上3.6m范围内以水下混凝土封底,以上用砂卵石填孔,填孔高度为4.9m。

7)封底混凝土

沉井总重为

8)低水位时沉井的浮力

2.各力汇总

表7-5-3(p185)(四)基底应力验算

沉井自最大冲刷线至井底的埋置深度为

考虑井壁侧面土的弹性抗力

式中:

其中:

沉井底面处地基容许承载力为

按地质资料,基底土属中等密实的砂、卵石类土层,根据桥规地基容许承载力表综合考虑后,取,土重度为(考虑浮力后的近似值)。由于考虑附加组合,承载力提高25% 。

因沉井埋入深度只有5.07m,如不考虑井壁侧土的弹性抗力,这时,

kPa

均满足要求(五)横向抗力验算

根据(5-9)计算在地面上z深度处井壁承受的侧土横向抗力

已知:。根据式(5-7)得

时,则

时,则

根据式(7-5-30)及式(7-5-31),沉井井壁侧土极限横向抗力为

已知:(因,由力的汇总表知,故)。将这些值代入上边两式:

时,

时,

均满足要求,计算时可以考虑沉井侧面土的弹性抗力。(六)沉井在施工过程中的强度验算(不排水下沉)1.沉井自重下沉验算

沉井自重

土与井壁间平均单位摩阻力

井周所受摩阻力

排水下沉时,G>T(未考虑围堰重)。不排水下沉时,考虑沉井顶部围堰(高出潮水位)重预计为600 kN,则

沉井自重稍大于摩阻力,在施工中,下沉如有困难,可采取部分排水方法也可采取加压重或其他措施。2.刃脚受力验算

1)刃脚向外挠曲

刃脚向外挠曲最不利的情况,本例经分析及试算,按《公桥基规》建议定为刃脚下沉到中途,标高为,刃脚切入土中1m,第二节沉井已接上,如图7-5-20所示。

图7-5-20 (P187)

刃脚悬臂作用的分配系数为

(1)\t计算各个力值(按低水位取单位宽度计算)

其中:

根据施工情况,并从安全考虑,刃脚外侧水压力以50%计算,作用在刃脚外侧的水压力和土压力为

如以静水压力的计算,即

刃脚摩阻力为

已知砂砾石层

故采用刃脚摩阻力为

单位宽沉井自重(不考虑沉井浮力及隔墙重)为

脚踏面竖向反力为

刃脚斜面横向力为

式中取为土的内摩擦角,即。故

井壁自重的作用点至刃脚根部中心轴距离为

刃脚踏面下反力合力

刃脚斜面上反力合力

R的作用点距离井壁外侧为

(2)各力对刃脚根部截面中心的弯矩计算(图7-5-21)

刃脚斜面水平力反力引起的弯矩为

水平水压力及土压力引起的弯矩

=

反力R引起的弯矩为

刃脚侧面摩阻力引起的弯矩为

刃脚自重引起的弯矩为

总弯矩为

(3)刃脚根部处的应力验算

已知:

由于水平剪力很小,验算时未考虑。压应力小于

按受力条件不需设钢筋,可按构造要求设置。

图7-5-21 (P190)

2)刃脚向内挠曲(图7-5-22)

(1)计算各个力值

①水平力及土压力

参阅图7-5-36,按潮水位计算单位宽度上的水、土压力为:

力对刃脚根部形心轴的弯矩为:

kN·m

②刃脚摩阻力产生的弯矩

故采用刃脚摩阻力为

③刃脚自重引起的弯矩为

④所有各力对刃脚根部的弯矩、轴向力及剪力

图7-5-22 (P190)

(2)刃脚根部截面应力验算

①弯曲应力验算

其中

均满足要求。

②剪应力验算

计算结果表明,刃脚外侧也只需按构造配筋。

③刃脚框架计算

由于,刃脚作为水平框架承受的水平力很小,故不需验算,可按构造布置钢筋。如需验算时,与井壁水平框架计算方法相同。这里从略。3.沉井井壁竖向拉力验算

(未考虑浮力)

井壁受拉面积为

混凝土所受的拉应力为

井壁内可按构造布置竖向钢筋。实际上根据土质情况井壁不可能产生大的拉应力。4.井壁横向受力计算

其最不利的位置是在沉井沉至设计标高,这时刃脚根部以上一段井壁承受的外力最大。它不仅承受本身范围内的水平力,还要承受刃脚作为悬臂传来的剪力。

考虑刃脚悬臂作用传来的荷载,其分配系数

1)考虑潮水位时,单位宽度井壁上的水压力(图7-5-23)

2)单位宽度井壁上的土压力(图7-5-23)为

图7-5-23 (P191)

刃脚及刃脚根部以上1.1m井壁范围的外力

3)圆端形沉井各部所受的力

]

根据上面计算,井壁最不利的受力位置在隔墙处,其弯矩,轴向力。按纯混凝土的应力验算

必须配筋。

4)配筋计算

(1)选择钢筋截面积(图7-5-24)

偏心距

图7-5-24 (P192)

设钢筋中心至井壁边缘的距离为

假定钢筋和混凝土应力在用足的条件下,中性轴的位置为

(式中容许应力

所需受拉钢筋总截面积为

受压钢筋总面积为

根据计算不需设受压钢筋,现按构造布置

对受拉区采用

(2)应力验算

①求中性轴位置

已知:

由试算法得

②求混凝土应力

③求受拉钢筋应力

5.第一节沉井竖向挠曲验算

因井壁截面不对称,故需先求出井壁截面形心轴的位置(图7-5-25)

单位宽井壁重

当沉井长宽比大于1.5,设两支点的距离为为长边长度),使其支点和跨中弯矩大致相等,则支点处的弯矩为(图7-5-26)

井壁上端的弯曲拉应力

由上计算结果是安全的。

按最不利情况计算,即假定长边中点搁住或长边两端点搁住。

当长边搁住时,最危险截面是在离隔墙中点轴0.8m处,该处的弯矩为

竖向挠曲应力为

图7-5-25 (尺寸单位:cm)(P195) 图7-5-26 (尺寸单位:cm)(P195)

当长边两端点搁住时

沉井支点反力为

离隔墙中心0.8m处的弯矩为

井壁下端挠曲应力为

由此可知,第一节沉井在各种情况下,上下端竖向挠曲应力均小于混凝土容许极限值。

封底混凝土及盖板验算从略。

  • 与《沉井基础最终版》相关:
  • 沉井基础-最终版
  • 沉井基础
  • 基础工程-沉井基础
  • 沉井基础动画
  • 基础工程(第二版)沉井
  • 沉井基础资料
  • 桩基础与沉井基础
  • 第9章+沉井基础
  • 沉井基础的施工.
  • 第五章沉井基础介绍
  • 本站网站首页首页教育资格全部考试考试首页首页考试首页职业资格考试最近更新儿童教育综合综合文库22文库2建筑专业资料考试首页范文大全公务员考试首页英语首页首页教案模拟考考试pclist学路首页日记语文古诗赏析教育教育资讯1高考资讯教育头条幼教育儿知识库教育职场育儿留学教育高考公务员考研考试教育资讯1问答教育索引资讯综合学习网站地图学习考试学习方法首页14托福知道备考心经冲刺宝典机经真题名师点睛托福课程雅思GREGMATSAT留学首页首页作文
    免责声明 - 关于我们 - 联系我们 - 广告联系 - 友情链接 - 帮助中心 - 频道导航
    Copyright © 2017 www.xue63.com All Rights Reserved